Package: fdaPOIFD (via r-universe)

September 2, 2024

Type Package

Title Partially Observed Integrated Functional Depth

Version 1.0.2

Maintainer Antonio Elías <antonioefz91@gmail.com>

Description Applications to visualization, outlier detection and classification. Software companion for Elías, Antonio, Jiménez, Raúl, Paganoni, Anna M. and Sangalli, Laura M., (2022), `Integrated Depth for Partially Observed Functional Data". Journal of Computational and Graphical Statistics. \url{https://doi.org/10.1080/10618600.2022.2070171}.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Suggests knitr, rmarkdown

VignetteBuilder knitr

Imports ggplot2, tibble, magrittr, reshape2, patchwork, MASS, fdapace, FastGP, stats

URL https://github.com/aefdz/fdaPOIFD

BugReports https://github.com/aefdz/fdaPOIFD

Repository https://aefdz.r-universe.dev

RemoteUrl https://github.com/aefdz/fdapoifd

RemoteRef HEAD

RemoteSha b8e20a803df025efe052243961a82705f42b9383

2 boxplotPOFD

Contents

boxp	lotPOFD	Functi	onal	Вох	cplot	for	r Pa	art	iall	y C	Obs	ser	ve	d I	- ในห	ıctı	ior	ıai	l L	at	a			
Index																								9
	sparsePOFD					•		•					•								•	•	•	. 7
	POIFD																							
	plotPOFD																							. 6
	outliergramPOFD																							. 5
	intervalPOFD																							. 4
	exampleData																							. 4
	commondomainPO	FD																						. 3
	boxplotPOFD																							. 2

Description

Plots the Functional Boxplot for PoFD and returns the magnitude and domain outliers. Magnitude outliers in blue, a dotted red indicates that the outlier situation occurs in a region with less than fdom proportion of the central region.

Usage

```
boxplotPOFD(data, centralRegion = 0.5, fmag = 1.5, fdom = 0)
```

Arguments

data	matrix p by n, being n the number of functions and p the number of grid points.
centralRegion	number between 0 and 1 determining the proportion of the deepest functions that builds the central region.
fmag	factor to enhance the functional central region and determine the functional whiskers. Default is equal to 1.5. The whiskers provide the rule to unmask magnitude outliers.
fdom	factor that provides the maximum proportion of observed functions in the central region to consider a magnitude outlier as a domain outlier also. A value equals to 0 means that domain outliers are those functions that are observed on the domain where any of the functions building the central region are observed. A value equals to 1 determine as domain outlier any magnitude outlier out of the region where the central region is completely observed.

Value

a list with the functional boxplot for PoDF the magnitude outliers and the domain outliers.

References

Sun, Y. and Genton, M. G. (2011). Functional boxplots. Journal of Computational & Graphical Statistics, 20(2):316–334.

commondomainPOFD 3

Examples

```
data(exampleData)
boxplotPOFD(exampleData$PoFDextremes_outliers, centralRegion = 0.5, fmag = 1.5, fdom = 0)
```

commondomainPOFD

Common Domain Observability

Description

Generates samples of functions observed in a common domain in the center part of the domain. See Elías et al (2020).

Usage

```
commondomainPOFD(data, observability = NULL, pIncomplete = NULL)
```

Arguments

data functional data completely observed. pxn matrix being n the number of curves

and p the number og evaluation points.

observability mean observed proportion of the domain where each function is observed.

pIncomplete number between 0 and 1 related to the proportion of curves that suffers partially

observability. The default is 1 meaning that all the sample curves are partially

observed.

Value

a list containing two elements 1) a functional sample and 2) the same sample of functions but partially observed following one of the schemes described in the argument type.

References

Elías, Antonio, Jiménez, Raúl, Paganoni, Anna M. and Sangalli, Laura M. (2020). Integrated Depths for Partially Observed Functional Data.

Examples

```
data <- sapply(1:100, function(x) runif(1)*sin(seq(0, 2*pi, length.out = 200)) +
runif(1)*cos(seq(0, 2*pi, length.out = 200)))
data_pofd <- commondomainPOFD(data, observability = 0.5, pIncomplete = 1)</pre>
```

4 intervalPOFD

exampleData

exampleData

Description

An illustrative Functional Gaussian processes with different partially observed patterns with outliers and without outliers.

Usage

exampleData

Format

A list with three data sets (functions by columns):

PoFDintervals Partially observed functional data in intervals

PoFDextremes Partially Observed functional data with missing intervals at the extremes

PoFDextremes_outliers Same as above but including two magnitude and shape outliers

References

Elías, Antonio, Jiménez, Raúl, Paganoni, Anna M. and Sangalli, Laura M. (2020). Integrated Depths for Partially Observed Functional Data.

Examples

```
data(exampleData)
plotPOFD(exampleData$PoFDintervals)
```

intervalPOFD

Random Interval Observability

Description

Generates samples of functions observed in different intervals. See Elías et al (2020).

Usage

```
intervalPOFD(data, observability = NULL, ninterval = NULL, pIncomplete = NULL)
```

outliergramPOFD 5

Arguments

data	functional data completely observed. pxn matrix being n the number of curves
------	--

and p the number og evaluation points.

observability mean observed proportion of the domain where each function is observed.

ninterval if type = "interval", n_interval is an integer with the number of observed intervals

1, 2, 3... Large values of this parameter requires a large parameter p to guarantee

the observability level.

pIncomplete number between 0 and 1 related to the proportion of curves that suffers partially

observability. The default is 1 meaning that all the sample curves are partially

observed.

Value

a list containing two elements 1) a functional sample and 2) the same sample of functions but partially observed following one of the schemes described in the argument type.

References

Elías, Antonio, Jiménez, Raúl, Paganoni, Anna M. and Sangalli, Laura M. (2020). Integrated Depths for Partially Observed Functional Data.

Examples

```
data <- sapply(1:100, function(x) runif(1)*sin(seq(0, 2*pi, length.out = 200)) +
runif(1)*cos(seq(0, 2*pi, length.out = 200)))
data_pofd <- intervalPOFD(data, observability = 0.5, ninterval = 2, pIncomplete = 1)</pre>
```

outliergramPOFD

Outliergram for Partially Observed Functional Data

Description

Plots the Outliergram for PoFD and returns the shape outliers.

Usage

```
outliergramPOFD(data, fshape = 1.5, p1 = 1, p2 = 0)
```

Arguments

data	matrix p by n, being n the number of functions and p the number of grid points.
fshape	inflation of the outliergram that determine the shape outlier rule.
p1	parameter of the outliergram for resampling method. Default = 1.
p2	parameter of the outliergram for resampling method. Default = 0 .

6 plotPOFD

Value

a list with the functional outliergram for PoDF and the shape outliers.

References

Arribas-Gil, A. and Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram. Biostatistics, 15(4):603–619.

Examples

```
data(exampleData)
outliergramPOFD(exampleData$PoFDextremes_outliers, fshape = 1.5, p1 = 1, p2 = 0)
```

plotPOFD

Plot Partially Observed Functional Data

Description

Plot the sample of partially observed curves and the proportion of observed functions.

Usage

```
plotPOFD(data)
```

Arguments

data

matrix p by n, being n the number of functions and p the number of grid points.

Value

Plot of the partially observed functional data and the proportion of observed functions at each time point.

Examples

```
data(exampleData)
plotPOFD(exampleData$PoFDextremes)
```

POIFD 7

POIFD	Integrated Depth for Partially Observed Functional Data	

Description

Compute the depth measures of a partially observed functional data set evaluated in a common grid.

Usage

```
POIFD(data, type = c("MBD", "FMD", "MHRD"), phi)
```

Arguments

data	matrix p by n, being n the number of functions and p the number of grid points. Rownames are the dense grid x and colnames the identifier of each functional data.
type	chosen depth measure. Fraiman and Muniz depth ("FMD"), Modified band depth ("MBD") or Modified Half Region Depth and Modified Epigraph/Hipograph Index "MHRD")
phi	phi function of weights for the POIFD. The default value is as in the paper, i.e. the proportion of observed functions at each time point.

Value

Ordered vector of depths from the deepest to outward. The names are the functions names (if provided) or the column position.

Examples

```
data(exampleData)
data <- exampleData$PoFDintervals
poifd <- POIFD(data, type = c("MBD"))</pre>
```

sparsePOFD Sparse Observability

Description

Generates samples of sparse functions. See Elías et al (2020).

Usage

```
sparsePOFD(data, observability = NULL, pIncomplete = NULL)
```

8 sparsePOFD

Arguments

data functional data completely observed. pxn matrix being n the number of curves

and p the number og evaluation points.

observability observed proportion of the domain where each function is observed.

pIncomplete number between 0 and 1 related to the proportion of curves that suffers partially

observability. The default is 1 meaning that all the sample curves are partially

observed.

Value

a list containing two elements 1) a functional sample and 2) the same sample of functions but partially observed following one of the schemes described in the argument type.

References

Elías, Antonio, Jiménez, Raúl, Paganoni, Anna M. and Sangalli, Laura M. (2020). Integrated Depths for Partially Observed Functional Data.

Examples

```
data <- sapply(1:100, function(x) runif(1)*sin(seq(0, 2*pi, length.out = 200)) +
runif(1)*cos(seq(0, 2*pi, length.out = 200)))
data_pofd <- sparsePOFD(data, observability = 0.5, pIncomplete = 1)</pre>
```

Index

```
* datasets
exampleData, 4
boxplotPOFD, 2
commondomainPOFD, 3
exampleData, 4
intervalPOFD, 4
outliergramPOFD, 5
plotPOFD, 6
POIFD, 7
sparsePOFD, 7
```